Thermal Inactivation of Human Immunodeficiency Virus in Lyophilised Blood Products Evaluated by ID$_{50}$ Titrations

Matthys Tersmette, Ruud E. Y. de Goede, Jan Over, Egge de Jonge, Horst Radema, Cornelis J. Lucas, Han G. Huisman, Frank Miedema

Central Laboratory of The Netherlands Red Cross Blood Transfusion Service and Laboratory for Experimental and Clinical Immunology, University of Amsterdam, The Netherlands

Abstract. Inactivation of human immunodeficiency virus (HIV) in lyophilised small pool cryoprecipitate, factor VIII concentrate, prothrombin complex and C1-esterase inhibitor concentrate by prolonged heat treatment (72 h, 60°C) was studied. Plasma products, inoculated prior to lyophilisation, had infectious titres ranging from 10^7 to $10^{10.5}$. Residual infectivity (TCID$_{50}$) was assessed by multiple titrations on H9 cells in a macro system and subsequent detection of virus replication by determining reverse transcriptase activity. Kinetics of inactivation showed a biphasic pattern: during the first 8 h a variable TCID$_{50}$ reduction up to $10^4.3$ was observed, followed by an additional loss of $10^1-10^2.7$ during the next 64 h. Heat treatment for 72 h resulted in a mean TCID$_{50}$ reduction of 10^5. It is concluded that prolonged heat treatment may lead to the adequate prevention of HIV transmission by lyophilised plasma products.

Introduction

Epidemiological data have strongly implicated a novel human retrovirus, formerly designated HTLV-III/LAV and recently renamed human immunodeficiency virus (HIV), as the aetiological infectious agent in AIDS [1, 2]. HIV can be transmitted by sexual contact and by transfusions of blood or plasma products [1-3]. Indeed, patients with haemophilia who are dependent on the administration of large quantities of clotting factor concentrates, prepared from large plasma pools, have been shown to be at high risk for infection with HIV and development of AIDS [4-7]. In order to prevent transmission of HIV by anti-haemophilic factor concentrates, it has been recommended that heat-treated factor VIII concentrate be preferentially used [8]. This recommendation was based on preliminary observations showing that HIV is sensitive to heat inactivation [9]. In this study we inoculated plasma products with high titres of HIV and subsequently evaluated the effect of lyophilisation and heat treatment at 60°C for 8–72 h by infectivity assays (TCID$_{50}$).

Materials and Methods

Inocula

HIV (strain HTLV-III) was grown in H9 cells (kindly provided by Dr. R. C. Gallo, Bethesda, Md. USA) that were cultured in Iscove modified Dulbecco's medium supplemented with 10% fetal calf serum and antibiotics. Virus inocula were prepared by concentration of culture supernatants of recently infected H9 cells either by precipitation with 10% polyethylene glycol (PEG) 6000 (Baker Chemicals) or by ultracentrifugation (Kontron TST 28 Rotor, 2 h, 25,000 rpm, 5°C). Pelleted virus was resuspended in a 10-mM Tris buffer, containing 100 mM NaCl and 1 mM EDTA, pH 7.8, and was used fresh.

Inoculation, Lyophilisation and Heat Treatment of Plasma Products

For the evaluation of HIV inactivation during lyophilisation and dry heat treatment of plasma products, virus inocula and liquid plasma products were mixed in a 1:19 (vol/vol) ratio. The following matrices were used: small pool cryoprecipitate, large pool FVIII concentrate, prothrombin complex and C1-esterase inhibitor concentrate. The inoculated preparations were aliquoted in 10-ml portions. Lyophilisation was carried out during 48 h at a shelf temperature of 20°C and a pressure decreasing from 0.3 to 0.03 mbar. Moisture content in simultaneously lyophilised dummy preparations was measured by the Karl Fischer method. Upon lyophilisation,
heat-treated ID
procedures ranged from ble I). Post-lyophilisation titres before heat treatment
experiments, moisture contents in
tions (2.5-4.8%) met manufacturing
Lyophilisation
used in these experiments ranged from 1
(>2 x negative mean) at least on two occasions, and
giant cells were present. Cultures were followed up to
the dilution that was able to infect
5
Effects,
inoculation.

characteristics of the lyophilised plasma products did not change
significantly, with only a small loss
pool·cryoprecipitate ND
107.6 104.9
107.0 104.6
109.0 107.8
107.8.
by lyophilisation of blood

Results

Virus Titre (TCIDso) Reduction by Lyophilisation

The TCIDso titre of the HIV-inoculated preparations used in these experiments ranged from 107.0 to 1010.5. Lyophilisation of these plasma products alone resulted in a reduction of TCIDso titre of maximally 3.2 logs (table I). Post-lyophilisation titres before heat treatment procedures ranged from 106.4 to 107.4. In a series of six experiments, moisture contents in lyophilised preparations (2.5-4.8%) met manufacturing specification (<5%), with the exception of experiment No. 3 (6.5%).

However, TCIDso reduction by heat treatment in this preparation did not significantly differ from the other experiments (table II).

Thermal Decay of HIV in Lyophilised Plasma Products at 60°C

Thermal inactivation of HIV-inoculated and lyophilised plasma products was studied by incubation for 8-72 h in a 60.0°C water bath. In four experiments (No. 1-4), due to the high initial titre, residual infectious virus was detectable in samples heated for 72 h, allowing an accurate estimation of TCIDso reduction after prolonged heat treatment. Sometimes, infection of H9 cultures inoculated with heated plasma products became evident only after 3-4 weeks of culture. Therefore, cultures were followed up to 5 weeks. In these experiments thermal decay of HIV determined by TCIDso titrations was similar in all four plasma products used as matrix during heat treatment (fig 1a, b). The kinetics of thermal inactivation tend to proceed according to a biphasic curve, showing 1.5-4.3 logs TCIDso reduction in the first 8 h of heat treatment and 1.0-2.7 logs TCIDso reduction in the remaining 64 h. The cumulative TCIDso reductions (table II) obtained by heat treatment as such for 72 h ranged from 4.2 to 5.6 logs with a mean of 5.0 logs reduction. From table II it is clear that heat treatment for shorter periods (8 or 24 h) resulted in a variable reduction of TCIDso titres, ranging from 1.5-4.3 logs (8 h) to 2.8-4.3 logs (24 h). No significant differences in TCIDso titre reductions after 72 h were observed between plasma

Table I. TCIDso reduction of HIV by lyophilisation of blood product matrices

| Exp. No. | Matrix | TCIDso
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>pre-lyophilisation</th>
<th>post-lyophilisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>small pool cryoprecipitate</td>
<td>ND</td>
<td>10^{7.5}</td>
</tr>
<tr>
<td>2</td>
<td>factor VIII concentrate</td>
<td>10^{8.9}</td>
<td>10^{7.8}</td>
</tr>
<tr>
<td>3</td>
<td>prothrombin complex</td>
<td>10^{8.5}</td>
<td>10^{4.8}</td>
</tr>
<tr>
<td>4</td>
<td>C1-esterase inhibitor concentrate</td>
<td>10^{10.5}</td>
<td>10^{7.3}</td>
</tr>
<tr>
<td>5</td>
<td>prothrombin complex</td>
<td>10^{7.0}</td>
<td>10^{4.6}</td>
</tr>
<tr>
<td>6</td>
<td>prothrombin complex</td>
<td>10^{7.4}</td>
<td>10^{4.5}</td>
</tr>
</tbody>
</table>

ND = not determined.

Table II. Thermal inactivation of HIV: cumulative reduction of TCIDso (-log Pt/P0)^1

<table>
<thead>
<tr>
<th>Exp. No. stock</th>
<th>Virus Matrix</th>
<th>Heat treatment, h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8 24 32 48 72</td>
</tr>
<tr>
<td>1</td>
<td>PEG small pool cryoprecipitate</td>
<td>4.0 4.0 ND 5.6</td>
</tr>
<tr>
<td>2</td>
<td>PEG factor VIII concentrate</td>
<td>4.3 4.3 ND 5.3 5.3</td>
</tr>
<tr>
<td>3</td>
<td>PEG prothrombin complex</td>
<td>3.3 3.3 ND 4.8 4.8</td>
</tr>
<tr>
<td>4</td>
<td>UC C1-esterase inhibitor concentrate</td>
<td>1.5 2.8 ND 2.8 4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ND = not determined.</td>
</tr>
</tbody>
</table>

1 P0 = untreated inoculum IDso; P0 = heat-treated IDso; 2 Virus concentrated by PEG or ultracentrifuge pelleting.
Thermal Inactivation of HIV

Fig. 1. Thermal decay of HIV in lyophilised blood products. a Small pool cryoprecipitate (○), factor VIII concentrate (▲) and b C1-esterase inhibitor concentrate (●) and prothrombin complex (○) were spiked with high titres of HIV, lyophiliSed and heat-treated at 60°C.

products inoculated with PEG or ultracentrifuge-concen­
trated inocula. In addition, the omission of 1% (w/v) sucrose added to factor VIII concentrate as a stabiliser did not have a significant effect on the TCID₅₀ reduction by heat treatment (data not shown). In two additional experiments (No. 5 and 6) with post-lyophilisation titres <10⁶, a similar biphasic curve was obtained, leaving no detectable virus after 48 and 72 h, respectively. The TCID₅₀ reduction resulting from both lyophilisation and heat treatment is summarized in table III.

Discussion

Convincing evidence has been produced by others that HIV is extremely heat labile in a liquid phase [9, 12]. Similar observations were made in our laboratory with HIV-inoculated liquid hepatitis B vaccine [Tersmette et al., unpubl. observations]. Because of the rapid decrease of biological activity of plasma products, especially clot­
ting factor concentrates during heat treatment in the fluid phase, these products must be heat-treated in the lyophilised state. At the present time, data concerning evaluation of heat inactivation of HIV in the lyophilised state are rather limited [12, 13]. In reports published to date, virus titres at the beginning of the heat treatment never exceed 10³ and hence little or no infectious virus could be detected after 24 h of heat treatment [12, 13]. In order to be able to fully evaluate the kinetics and efficacy of the heat inactivation of HIV over a 72-hour time period, we aimed at the highest achievable virus titre in the inocula. In the present study in four experiments, lyophilised plasma products containing TCID₅₀ titres of 10^{6.8}–10^{7.8} HIV were prepared and subsequently heat treated. With these materials a biphasic thermal decay of HIV was observed. After a TCID₅₀ reduction of 1.5–4.3 logs in the first 8 h of heat treatment, additional inactivation was observed in the remaining inactivation period. In all four experiments a considerable TCID₅₀ reduction of ≥4.2 logs was found after 72 h of heat treatment.

The biphasic inactivation may be explained in two ways: First, it could be due to a heterogeneity in the virus inoculum. However, whereas genomic in vitro variation of the virus has never been observed [14], two different varieties of HIV were shown to be no less sensitive to heat treatment [12, 13]. Moreover, a similar biphasic curve was found in other experiments on viral inactiva­tion in lyophilised preparations. This biphasic curve did not change upon a second consecutive inactivation [15]. More likely, the inactivation kinetics may be attributed to an inhomogeneous distribution of virus particles in the lyophilised matrix, resulting in differential heat sen-

Table III. Inactivation of HIV in plasma products by lyophilisa­

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Virus stock<sup>1</sup></th>
<th>Matrix</th>
<th>TCID<sub>50</sub> before lyophilisation</th>
<th>Residual TCID<sub>50</sub></th>
<th>Overall TCID<sub>50</sub> reduction<sup>4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PEG small pool cryoprecipitate</td>
<td>≥7.5</td>
<td>1.9</td>
<td>≥5.6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PEG factor VIII concentrate</td>
<td>9.0</td>
<td>2.5</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PEG prothrombin complex</td>
<td>9.5</td>
<td>≤2.0</td>
<td>≥7.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>UC C1-esterase inhibitor concentrate</td>
<td>10.5</td>
<td>3.1</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>UC prothrombin complex</td>
<td>7.0</td>
<td>≤1.5</td>
<td>≥5.5<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>UC prothrombin complex</td>
<td>7.6</td>
<td>≤0.5</td>
<td>≥7.1</td>
<td></td>
</tr>
</tbody>
</table>

1 Virus concentrated by PEG or ultracentrifuge pelleting.
2 Expressed as log value.
3 TCID₅₀ after lyophilisation and 72h, 60°C; expressed as log value.
4 Expressed as -log P_P/P<P_P.
5 Minimal TCID₅₀ reduction as assessed after 48 h of heat treatment.
sitivity. In our experiments the shape of the inactivation curve was not influenced by the titres of the inocula. Experiments with post-lyophilisation titres <10^3 showed a similar initial thermal decay leaving no detectable virus after prolonged heating. Hence, our results imply that the TCID_{50} reduction in the initial 8–24 h of heat treatment does not allow an extrapolation with respect to reduction obtained by prolonged periods of time, as has been done by others [12].

Taken together, lyophilisation and heat treatment resulted in a mean TCID_{50} reduction of at least 6.6 logs (range 5.5–7.5 logs) (table III). In preliminary clinical studies on the efficacy of heat treatment, as investigated by studying seroconversion rates of haemophiliacs treated with either heat-treated or conventional factor VIII preparations, no seroconversions could be recorded in patients treated with heat-inactivated preparations [16–18]. Recently, two cases of possible transmission of HIV with heat-treated factor VIII concentrate have been reported [19, 20]. However, in both cases a preparation heated only for 30 h had been administered [21]. In a hypothetical worst case scenario, it has been deduced that a commercial factor preparation produced from unscreened plasma pools may contain 2 \times 10^5 TCID_{50}/ml HIV at most [22]. If so, inactivation procedures that result in a reduction of more than 5.3 logs in infectivity may be considered to prevent the transmission of HIV. Our findings, in combination with the majority of the clinical reports available, strongly suggest that this assumption is valid, and that transmission of HIV and AIDS can be adequately prevented by heat inactivation procedures as described in this paper.

Acknowledgement

We are indebted to Miss Joline Classen for skilful technical assistance.

References

17 Mösseler, J.; Schimpf, K.; Auerswald, G.; Bayer, H.; Schneider, J.; Hunsmann, G.: Inability of pasteurised factor VIII prepara-
Thermal Inactivation of HIV

Received: June 19, 1986
Revised manuscript received: July 21, 1986
Accepted: July 22, 1986

Dr. Frank Miedema,
Central Laboratory of The Netherlands Red Cross Blood Transfusion Service,
PO Box 9406,
NL-1006 AK Amsterdam (The Netherlands)