Liver Biopsy in Hemophilia A

Patients and Methods

Patients

Patients presenting to the Hemophilia Clinic of North Carolina Memorial Hospital are routinely screened for evidence of liver disease. When clinical and biochemical evaluation suggest viral hepatitis, each patient is followed for evidence of the development of chronic hepatitis. Since 1972, six patients have been followed who have had persistent elevation of serum transaminase values of greater than twice normal, often in association with other signs and symptoms of chronic hepatitis. Every effort was made to exclude drug-induced, alcohol-related, and inherited liver diseases. When abnormalities of this severity persisted for at least 6 months, percutaneous liver biopsy was done to establish a histologic diagnosis and to guide further therapy.

Preparation of the Patient

The patients were admitted to the hospital 24 h before the liver biopsy. Each patient was checked for the presence of an inhibitor of factor VIII using the inhibitor assay of Roberts and associates (13). If no inhibitor was present, the patient received an infusion of glycine-precipitated factor VIII calculated to raise his factor VIII level to 100%. Blood was drawn at 15 min, 1, 3, 6, 9, and 12 h after the infusion was completed. With each sample, a factor VIII assay was done to be certain that the in-vivo recovery and biologic half-life of factor VIII were normal. If an inhibitor was found, the biopsy was not done. If the fall-off study was normal, glycine-precipitated factor VIII, calculated to raise the factor VIII level to approximately 100%, was again administered during a short period of time just before the liver biopsy. Immediately after this infusion, the biopsy was done using the Klatskin needle (14), and the patient was begun on a constant infusion of factor VIII (15) calculated to maintain the factor VIII level of the patient at about 75% of normal. The amount of infusion was adjusted according to factor VIII assay results and was continued for 72 h after the biopsy.

Materials and Methods

The blood for the coagulation studies was collected in plastic syringes using one-part 3.2% citrate to eight parts blood. The partial thromboplastin time (PTT) using Thrombofax (Ortho Diagnostics; Raritan, New Jersey) was done by the method of Rodman, Barrow, and Graham (16). Factor VIII assays were done by the one-stage assay using known factor VIII-deficient substrate as described by Barrow, Bullock, and Graham (17). Inhibitors to factor VIII were searched for by the method of Roberts and associates (13). If no inhibitor was present, the patient was begun on a constant infusion of factor VIII (15) calculated to maintain the factor VIII level of the patient at about 75% of normal. The amount of infusion was adjusted according to factor VIII assay results and was continued for 72 h after the biopsy.

Pathology

All of the liver biopsies were reviewed by one of the authors (HL) and by Dr. Joseph Grisham of the Department of Pathology. Chronic persistent hepatitis and chronic active hepatitis were defined histologically in accord with the description of Fallon (18). Cirrhosis was diagnosed only if there were areas where the normal lobular architecture was no...
The three who eventually showed chronic active hepatitis and in none with chronic persistent hepatitis. All six patients were anti-HBs-positive.

Table 1. Patient Characterization

<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Factor VIII Level</th>
<th>Past Therapy*</th>
<th>Signs and Symptoms of Liver Disease</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>yrs</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>36</td>
<td>6</td>
<td>GP</td>
<td>Acute hepatitis—yes</td>
<td>Chronic active hepatitis</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td><1</td>
<td>WB, P, cryo.</td>
<td>Fatigue, Hepatomegaly, splinter angiomata</td>
<td>Chronic active hepatitis and cirrhosis</td>
</tr>
<tr>
<td>3</td>
<td>51</td>
<td>3</td>
<td>WB, P, cryo.</td>
<td>Acute hepatitis—no</td>
<td>Chronic active hepatitis</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td><1</td>
<td>WB, P, cryo.</td>
<td>No symptoms or signs</td>
<td>Chronic persistent hepatitis</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>30</td>
<td>Cryo., GP</td>
<td>Acute hepatitis—yes</td>
<td>Chronic persistent hepatitis</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td><1</td>
<td>WB, P, cryo.</td>
<td>Malaise</td>
<td>Chronic persistent hepatitis</td>
</tr>
</tbody>
</table>

* WB = whole blood; P = plasma; Cryo = cryoprecipitate; GP = glycine-precipitated factor VIII concentrates.

longer apparent and regenerating nodules and fibrosis had formed.

Results

No complications occurred from the liver-biopsy procedure. Of the six patients biopsied, two had chronic active hepatitis, one had chronic active hepatitis and early cirrhosis, and three had chronic persistent hepatitis.

Table 1 summarizes the historical and clinical aspects of the six patients. (See Appendix for details of each case.) Each patient had received various types of blood products during his life, but only three had clinically documented acute viral hepatitis. Five of the six patients had intermittent clinical symptoms of chronic liver disease during the months before biopsy. Physical findings of chronic liver disease were limited to the three patients who eventually had chronic active hepatitis on biopsy. All three had hepatomegaly and one presented with prolonged jaundice (Case 3).

Table 2 summarizes the duration of abnormal liver function tests and the values of these tests at the time of biopsy. All patients had abnormal tests for more than 6 months, with three having abnormalities for longer than 12 months. HBsAg was detected in two of three patients with chronic active hepatitis and in none with chronic persistent hepatitis. All six patients were anti-HBs-positive. The three who eventually showed chronic active hepatitis on biopsy differed from those with chronic persistent hepatitis in that each had elevated bilirubin and total globulins.

The three patients showing chronic persistent hepatitis were not given corticosteroids. During a 2-year follow-up period, none has shown clinical or biochemical evidence of progression of his disease although all have continued to have elevated serum transaminase values. The three patients with chronic active hepatitis were given prednisolone in tapering doses. Two patients responded favorably with clinical and biochemical remission and are presently off all medications with no evidence of relapse. The third patient (Case 1) remains on corticosteroid therapy and has clinical signs of progression to cirrhosis (that is, ascites, edema, and esophageal varices on barium study). There have been no significant side-effects from corticosteroid therapy in any patient.

Discussion

The development of factor VIII concentrates has allowed easier and more effective treatment of hemophilia A. One of the adverse side-effects has been the development of viral hepatitis. Screening each donor for HBsAg has decreased, but not eliminated, the exposure to HBV (19) and does nothing to decrease hepatitis caused by other viruses (20, 21). Most attention has been focused on clinically apparent episodes of hepatitis. We know, however, that anicteric, clinically insignificant hepatitis must be frequent because of the increased incidence of HBsAg (6%) and anti-HBs (73%) found in 109 patients with hemophilia followed at our institution during a 2-year period. Only 25% of this group had a clinical history of hepatitis (22).

Chronic liver disease after post-transfusion hepatitis continues to be a significant problem in patients without hemophilia (23). Chronic liver disease in patients with hemophilia A is infrequently documented in the literature (3). A recent retrospective autopsy evaluation of the cause of death in patients with hemophilia showed no occurrence of cirrhosis and a 3% to 5% frequency of hepatitis (24). Review of six patients with hemophilia A who came to autopsy at our institution (1959 through 1973) showed that all died from hemorrhagic complications and none had evidence of liver disease. Mannucci and colleagues (4) found a high frequency of abnormal liver-function tests in their 91 asymptomatic patients with severe hemophilia, of whom 18% gave a history of jaundice. Serum transaminase values were elevated in 45%; gamma-globulin in 34%; gamma glutamyltranspeptidase in 27%; alkaline phosphatase in 23%; and bilirubin in 13%. Serum albumin was depressed in 13%. The 70% with either a positive HBsAg or anti-HBs had a higher incidence of abnormal liver...
However, the duration of these abnormal liver-function tests was not mentioned, and liver biopsies were not done to identify the liver histology. It is our fear that liver disease may become a significant cause of morbidity and mortality in these patients as hemorrhagic complications are reduced with improved concentrate therapy.

This report shows that patients with hemophilia A may develop significant chronic liver disease. The patients reported here had the persistent abnormalities of liver function for at least 6 months. We felt that this was an indication to consider liver biopsy to define the severity of the liver disease and to consider the need for further therapy (that is, corticosteroids).

Chronic active hepatitis cannot be reliably differentiated from chronic persistent hepatitis in the early stages of the disease by clinical and biochemical variables alone (8-11). This small group of patients underscores the need for liver biopsy to differentiate chronic active hepatitis from chronic persistent hepatitis. Symptoms of liver disease were present in all three of our patients with chronic active hepatitis but were also present in two of the three with chronic persistent hepatitis. Three physical and biochemical abnormalities were found only in patients with chronic active hepatitis: hepatomegaly, increased total bilirubin, and increased globulins. These three findings may be signs of disease that has become more extensive. As patients without bleeding disorders and persistent liver-function abnormalities are being biopsied earlier in the course of their liver disease, it is now recognized that the pathologic changes of chronic active hepatitis can be seen on biopsy before many of these clinical and biochemical abnormalities develop (6, 10, 23, 25, 26). If it is true that the morbidity and mortality from the disease are greatly reduced by treatment with corticosteroids in the early stages (8), liver biopsy should not be postponed until more advanced signs of the disease are present.

The question becomes whether the risk of liver biopsy in patients with hemophilia A with chronic active hepatitis is greater than the advantages to be gained from corticosteroid therapy. During the past decade, various controlled trials on the use of corticosteroids in treatment of chronic active hepatitis with and without cirrhosis have appeared (6, 7, 27, 28). The results of these trials strongly suggest that corticosteroids should be instituted if chronic active hepatitis is found. Some investigators have questioned their use in various subpopulations of patients with chronic active hepatitis (especially asymptomatic individuals and those with the persistence of the HBsAg) (29).

Controlled trials in these various subpopulations are being formulated (30). Until further information is acquired, it appears that corticosteroid therapy should be considered in patients with biopsy-proven chronic active hepatitis. On the other hand, there is no proven efficacy of corticosteroids in the therapy of chronic persistent hepatitis (9). The adverse side-effects of corticosteroids are well documented (30), and these may be magnified in patients with hemophilia, making therapy with these medications dangerous without histologic documentation of the liver disease.

At the present time, when we consider all these factors and combine them with our lack of morbidity from liver biopsy, we conclude that the potential risks of complications from liver biopsy in hemophilia A patients are outweighed by the therapeutically important histologic information gained from the biopsy. It is our hope that in the years to come, clinical and biochemical variables will

Table 2. Values of Liver-Function Tests at the Time of Liver Biopsy

<table>
<thead>
<tr>
<th>Case</th>
<th>Diagnosis</th>
<th>Duration of Abnormal Liver-Function Tests</th>
<th>Total Bilirubin*</th>
<th>Alkaline Phosphatase†</th>
<th>SGOT‡</th>
<th>SGPT‡</th>
<th>Albumin</th>
<th>Total Globulins</th>
<th>HBsAg</th>
<th>Anti-HBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chronic active hepatitis</td>
<td>0 to 1.2</td>
<td>2 to 6</td>
<td>8 to 40</td>
<td>8 to 35</td>
<td>3.5 to 5.0</td>
<td>1.7 to 3.3</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>Chronic active hepatitis</td>
<td>1.7</td>
<td>8.5</td>
<td>269</td>
<td>189</td>
<td>4.5</td>
<td>4.2</td>
<td>+</td>
<td>...</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Chronic active hepatitis</td>
<td>1.4</td>
<td>3.4</td>
<td>183</td>
<td>194</td>
<td>4.3</td>
<td>3.4</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Chronic persistent hepatitis</td>
<td>8.7</td>
<td>22.8</td>
<td>518</td>
<td>263</td>
<td>3.6</td>
<td>3.4</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Chronic persistent hepatitis</td>
<td>0.6</td>
<td>8.1</td>
<td>158</td>
<td>258</td>
<td>3.8</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Chronic persistent hepatitis</td>
<td>0.7</td>
<td>3.4</td>
<td>84</td>
<td>183</td>
<td>4.8</td>
<td>3.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Units of mg/dl.
† Nitrophenol units.
‡ Sigma-Frankel units; SGOT = serum glutamic oxaloacetic transaminase; SGPT = serum glutamic pyruvic transaminase.
§ Units of g/dl.
|| HBsAg = Hepatitis B surface antigen; anti-HBs = antibody to HBsAg.

Lesene et al. *Liver Biopsy in Hemophilia A* 705

Supplied by The British Library - "The world's knowledge"
allow the important differentiation between chronic active hepatitis and chronic persistent hepatitis without the need for histologic documentation. Until that time, we feel that percutaneous liver biopsy, using the methods that we have adopted, should be considered in patients with hemophilia A, chronically abnormal liver-function tests, and signs and symptoms of chronic liver disease.

Hepatitis is also common in hemophilia B (1, 3, 4) and other hemophilioid disorders. Presently, however, we would not favor liver biopsies in those patients requiring coverage with prothrombin complex concentrates because of the known complications of these products in patients with liver disease (32-34).

Appendix

CASE HISTORIES

Case 1: This patient is a 36-year-old man with mild hemophilia A (factor VIII, 6%). In June 1972, he developed symptomatic, HB Ag-positive hepatitis. Liver-function test values remained abnormal for longer than 6 months, serum transaminase values at times being more than 1000 U. Eight months after the onset of jaundice, he was admitted for liver biopsy. Positive physical findings were limited to multiple spider angiomas and an enlarged liver of 14 cm. At the time of biopsy, several liver-function tests were abnormal (see Table 2). The biopsy was done without complication on 4 April 1973, after the procedure noted above. The interpretation of the biopsy was chronic active hepatitis, and the patient was begun on prednisolone therapy. He has remained on these medications for 4 years with no side-effects, but he has developed clinical signs of cirrhosis (that is, fluid retention and esophageal varices on barium study).

Case 2: This 40-year-old man with severe hemophilia A (factor VIII, 1%). He has received multiple transfusions of whole blood, plasma, cryoprecipitate, and glycine-precipitated factor VIII concentrates. In May 1973, he was first noted to have abnormal liver-function tests (see Table 2). The percutaneous liver biopsy was done without complication on 26 April 1974, and showed chronic persistent hepatitis. No further therapy was given, and he continues to have mild elevation of his serum transaminase levels without clinical signs of progression of his liver disease.

Case 4: This 23-year-old man with severe hemophilia A (factor VIII, < 1%). Bleeding episodes had been controlled by the use of whole blood, plasma, and cryoprecipitate therapy since 1970 when glycine-precipitated factor VIII concentrates were first used. During an evaluation for knee surgery in September 1973, he was first noted to have abnormal liver-function tests. At no time did he have clinical symptoms suggestive of hepatitis. Because of the liver-function abnormalities (and an upper gastrointestinal bleed in October 1973), surgery was postponed until February 1974, when he had insertion of a Wilellidum endoprosthesis to replace his right knee in spite of mildly elevated serum transaminase values. During his recovery, liver-function test results were abnormal (see Table 2). Liver biopsy was done without complication on 21 February 1975. It showed chronic active hepatitis, and he was begun on prednisolone therapy. These medications were withdrawn after 1 year with clinical and biochemical resolution of his disease, and he has shown no evidence of relapse.

Case 5: This 26-year-old man with mild hemophilia A (factor VIII, 30%). He experienced only mild bleeding after a dental extraction and after a tonsillectomy. At age 21, he had a traumatic hemorrhage and hemophilia was diagnosed for the first time. In 1972, he had an elective laminectomy for herniated nucleus pulposus, and postoperatively received his first replacement therapy with cryoprecipitate and glycine-precipitated factor VIII concentrates. Several months later, he developed symptoms of hepatitis and serum transaminase levels of greater than 1000 U. During the next 2 years, he had several episodes of malaise at which time serum transaminase values were greater than 500 U. Even when he was asymptomatic, SGOT levels were approximately 100 U. He had no evidence of liver disease on physical examination. When he was admitted for liver biopsy, the only liver-function test abnormalities were elevated serum transaminase values (see Table 2). The percutaneous liver biopsy was done without complication on 8 May 1974, and showed chronic persistent hepatitis. No further therapy was given, and he continues to have mild elevation of his serum transaminase levels without clinical signs of progression of his liver disease.

Case 6: This 27-year-old man with severe hemophilia A (factor VIII, < 1%). His early bleeding problems were treated with whole blood, plasma, and cryoprecipitate. He received multiple glycine-precipitated factor VIII concentrates in 1972 and began home treatment with this product. In November 1974, he was first noted on routine screening to have elevated serum transaminase levels. The SGOT remained between 100 to 300 U on all measurements for the next 12 months, and he had intermittent fatigue and malaise. Physical examination showed no signs of liver disease. Before liver biopsy on 10 November 1975, the only liver-function test abnormalities were elevated serum transaminase values (see Table 2). The percutaneous liver biopsy was done without complications and showed chronic persistent hepatitis. No further therapy was given, and he continues to have mild elevation of his serum transaminase levels without clinical signs of progression of his liver disease.

ACKNOWLEDGMENTS: Grant support: in part by grants from the Department of Health, Education, and Welfare, Public Health Service (A11275, AM 05337, and AM 05395); and an Institutional National Service Award from the National Heart and Lung Institute, HL 07149. Portions of this investigation were presented at a conference in New York called, "Hemophilia and Hepatitis: Their Relationship and Possible Clinical Implications."
workshop, “Unsolved Therapeutic Problems in Hemophilia,”
hosted by the National Institutes of Health, 1 and 2 March
1976, Bethesda, Maryland (35).
Received 26 July 1976; revision accepted 2 March 1977.

Requests for reprints should be addressed to Henry R. Lesesne,
M.D., Division of Gastroenterology, University of North Carolina
School of Medicine; Chapel Hill, NC 27514.

References

1. BIGGS R: Jaundice and antibodies directed against Factor VIII
and IX in patients treated for hemophilia or Christmas disease
2. KAPERNICK L, KIPNIS SA: Hepatitis and clotting-factor con­
3. LEWIS JH, MAXWELL NG, BRANDON JM: Jaundice and hepa­
titis B antigen/antibody in hemophilia. Transfusion 14:203-211,
1974
matic liver disease in hemophiliacs. J Clin Pathol 28:620-624,
1975
5. PETERSON MR, BARKER LF, SCHAEDE DS: Detection of antibody
to hepatitis-associated antigen in hemophilia patients and in
6. COCK GC, MULLIGAN R, SHERLOCK S: Controlled prospective
trial of corticosteroid therapy in active chronic hepatitis. Q J
Med 40:159-165, 1971
7. SOWLOWY RD, SUMMERSKILL WHI, BAGGENTOSS AH, et al.
Clinical, bioclinical, and histological febrility of severe
chronic active liver disease: a controlled study of treatments and
8. MISTLETT SP, BLACKBURN CRB: Active chronic hepatitis. Am J
Med 48:484-495, 1970
10. HENLEY RS, AFFELMAN HD: The fading menace of chronic
11. BOVER JL: Chronic hepatitis—a perspective on classification and
determinants of prognosis. Gastroenterology 70:1141-1171, 1976
13. ROBERTS HR, SCALED MB, MANSSON JT, et al: A classical and
experimental study of acquired inhibitors to Factor VIII. Blood
24:1088-1094, 1964
14. SCHIFF L, GALL EA: Needle biopsy of the liver, in Diseases of the
Liver, 3rd ed, edited by SCHIFF L. Philadelphia, J. B. Lippin­
cott Co., 1969, p. 212
intravenous infusion of Factor VIII in classic hemophilia. Br J
Haematol 18:659-667, 1970
16. RODMAN NF Jr, BARROW EM, GRAHAM JB: Diagnosis and con­
trol of the hemophiloid states with the partial thromboplastin
17. BARROW EM, BULLOCK WF, GRAHAM JB: A study of the carrier
state for plasma thromboplatincomponent (PIC, Christmas
factor) deficiency, utilizing a new assay procedure. J Lab Clin
Med 55:936-945, 1960
18. FALLOON HJ, WEEBER S, AVOLI LV: Chronic active hepatitis.
JAMA 221:868-891, 1974
hepatitis after exclusion of commercial and hepatitis B anti­
spectrum of post-transfusion hepatitis. Gastroenterology 69:
1278-1285, 1975
associated hepatitis not due to viral hepatitis type A or B. N
22. WEGER WP, BLATT PM, LESSENE HR, et al: Liver function
tests in hemophilia, in Unsolved Therapeutic Problems in
Hemophilia, edited by AMORSON DL, FRANTONI J. Department of
Health, Education, and Welfare publication NIH 77-1089,
35-44
23. KONITZ RL, SUFFIN SC, GITNICK GL: Post-transfusion chronic
24. ALDORT L: Cause of death in hemophiliacs, See reference no.
22, pp. 9-14
25. DOLIN TD, DAVIS AE, LINDGOLD AG: Liver disease and cell­
mediated immunity in hepatitis-associated antigen (HAA) car­
3:391-408, 1974
27. MURRAY-LEYON IM, STEER BB, WILLIAMS R: Controlled trial of
prednisone and aspartate in active chronic hepatitis. Lancet
1:735-737, 1973
28. COPENMANN STUDY GROUP FOR LIVER DISEASES: Sex, ascites
and alcoholism in survival of patients with cirrhosis. Effect of predni­
29. BERK PD, JONES EA, PLOTZ PI, et al: Corticosteroid therapy
for chronic active hepatitis (editorial). Ann Intern Med 85:523-
525, 1976
30. PLOTZ PH: Asymptomatic chronic hepatitis (editorial). Gastro­
terology 68:1629-1630, 1975
31. DUJOVE P, AZAKOFF DL: Clinical complications of corti­
costeroid therapy: a selected review, in Steroid Therapy, edited
27-41
32. BLATT PM, LINDGOLD RL, KEMSON HS, et al: Thrombogenic
materials in prothrombin concentrates. Vox Sang 24:35-44,
1974
33. DAVEN AJ, SAHATCUIY GG, RASH CE: Acute coagulopathy follow­
ing infusion of prothrombin complex concentrate. Am J Med
60:719-722, 1976
34. CEDERBAUM AJ, BLATT PM, ROBERTS HR: Intravenous coagula­
tion with use of human prothrombin complex concentrates. Ann
35. LESSENE HR, MORGAN JE, BLATT PM, et al: Liver biopsy in
hemophilia A, in Unsolved Therapeutic Problems in Hemoph­
ilia, edited by AMORSON DL, FRANTONI J. Department of
Health, Education, and Welfare publication NIH 77-1089,
67-69

Lesesne et al. • Liver Biopsy in Hemophilia A 707

Supplied by The British Library - "The world's knowledge"